19 research outputs found

    Evolution of the digital society reveals balance between viral and mass media influence

    Full text link
    Online social networks (OSNs) enable researchers to study the social universe at a previously unattainable scale. The worldwide impact and the necessity to sustain their rapid growth emphasize the importance to unravel the laws governing their evolution. We present a quantitative two-parameter model which reproduces the entire topological evolution of a quasi-isolated OSN with unprecedented precision from the birth of the network. This allows us to precisely gauge the fundamental macroscopic and microscopic mechanisms involved. Our findings suggest that the coupling between the real pre-existing underlying social structure, a viral spreading mechanism, and mass media influence govern the evolution of OSNs. The empirical validation of our model, on a macroscopic scale, reveals that virality is four to five times stronger than mass media influence and, on a microscopic scale, individuals have a higher subscription probability if invited by weaker social contacts, in agreement with the "strength of weak ties" paradigm

    Percolation in self-similar networks

    Get PDF
    We provide a simple proof that graphs in a general class of self-similar networks have zero percolation threshold. The considered self-similar networks include random scale-free graphs with given expected node degrees and zero clustering, scale-free graphs with finite clustering and metric structure, growing scale-free networks, and many real networks. The proof and the derivation of the giant component size do not require the assumption that networks are treelike. Our results rely only on the observation that self-similar networks possess a hierarchy of nested subgraphs whose average degree grows with their depth in the hierarchy. We conjecture that this property is pivotal for percolation in networks.Comment: 4 pages, 3 figure

    Epidemic spreading in complex networks with degree correlations

    Full text link
    We review the behavior of epidemic spreading on complex networks in which there are explicit correlations among the degrees of connected vertices.Comment: Contribution to the Proceedings of the XVIII Sitges Conference "Statistical Mechanics of Complex Networks", eds. J.M. Rubi et, al (Springer Verlag, Berlin, 2003

    Correlations in weighted networks

    Get PDF
    We develop a statistical theory to characterize correlations in weighted networks. We define the appropriate metrics quantifying correlations and show that strictly uncorrelated weighted networks do not exist due to the presence of structural constraints. We also introduce an algorithm for generating maximally random weighted networks with arbitrary P(k,s)P(k,s) to be used as null models. The application of our measures to real networks reveals the importance of weights in a correct understanding and modeling of these heterogeneous systems.Comment: 4 pages, 2 figure
    corecore